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Abstract—In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer’s Disease Demen-
tia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pur-
sue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms –when
applied to different biomarkers and other conditions– is far from being reached. In this study, we compared
the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of
MCI subjects obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Random Forest,
Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be
simultaneously employed –with the voting procedure– to improve predictivity. AD prediction accuracy is influ-
enced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins
and APOE e4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI
data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algo-
rithms’ performances by combining clinical and biological measures. Accordingly, using the three ML algorithms,
the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally,
the feature selection procedure indicated that the most critical variables in the respective classes were the
ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated
Tau and Ab42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multi-
modal biomarkers helps make more accurate and solid predictions.� 2023 IBRO. Published by Elsevier Ltd. All rights

reserved.
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INTRODUCTION

Mild cognitive impairment (MCI) is a condition

characterized by worsening cognition in one or more
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same time, independence in daily living activities
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synergistically driven by factors like primary or secondary

neurodegenerative processes (Brem and Sensi, 2018),

systemic alterations, and unhealthy lifestyle habits

(Knopman, and Petersen, 2014). It can exhibit a stable

course (s-MCI) or be prodromal (Albert et al., 2011) to

Alzheimer’s Disease Dementia (AD) (converting MCI, c-

MCI). In recent years a large body of evidence indicates

that the identification of MCI subjects at high risk of con-

version can be highly improved with the use of Artificial

Intelligence and Machine Learning (ML) algorithms

(Varoquaux and Cheplygina, 2022). Thus, large datasets

containing a wide array of biomarkers, combined with ML

algorithms, are now widely employed to pursue data-

driven diagnostic and prognostic goals (Rossini et al.,

2022). However, although many studies have applied

ML for predicting dementia, an agreement on the stability

of these algorithms –when applied to different biomarkers

and under other conditions– is far from being reached

(Faouri et al., 2022). Selecting which ML algorithm to

use is crucial, as each exhibits strengths and weak-

nesses. Specifically, for large and high-dimensional data,

deep learning (DL) often outperforms shallow ML algo-

rithms (Janiesch et al., 2021). However, the problematic

availability of large amounts of clinical multimodal data,

and the poor interpretability of the learning process and

results make DL less exploitable in AD prediction. When

the data size is small (lower than 1,000), Naive Bayes

(Shree and Sheshadri, 2018), K-nearest neighbors

(Dinu and Ganesan, 2019), and support vector machine

(Syaifullah et al., 2021), are the most commonly used

ML classifiers together with logistic regression (Rohini

and Surendran, 2021). The most widely used tree-

based ML algorithms are Random Forest (RF), Adaptive

Boosting (AdaBoost), and Gradient Boosting (GB), which

utilize decision trees within an ensemble through bagging

(in RF) or boosting (in AdaBoost and GB) methods

(Natras et al., 2022).

In this study, we applied RF and GB Machine which

consistently outperform other models, as confirmed by

many studies (Fernández-Delgado et al., 2014). In addi-

tion, the results of tree-based algorithms like RF and

GB, are interpretable, unlike DL models like Deep Artificial

Neural Network. Interpretability of results is a fundamen-

tal target for predicting dementia because it can point

out new and unknown patterns in disease progression.

At the same time, these models are robust, and with a

good performance so that they can achieve a good and

excellent accuracy and prediction rate even with a

modest number of sample data.

RF is an ensemble learning algorithm structured from

a set of decision trees using the Bagging algorithm

(Breiman, 2001). The trees grow by splitting a node with

the best features chosen from a random subset of fea-

tures and the best possible thresholds. The model’s ran-

domness can also be increased using random

thresholds for each feature (Qi, 2012). GB and eXtreme

Gradient Boosting (XGB) are ensemble learning algo-

rithms that, unlike RF, are built on weak learners, i.e.,

shallow trees that sometimes can be made with only

one level of decision. In addition, GB (Friedman, 2001)

and XGB (Chen and Guestrin, 2016) are based on the
boosting technique (Schapire and Freund, 2013). This

method transforms many weak classifiers into one robust

classifier, reducing bias and variance. The boosting

method learns sequentially, building on the error of previ-

ous classifiers. XGB (Chen and Guestrin, 2016) is an opti-

mization of GB with advanced regularization techniques

to prevent overfitting.

In a previous study (Massetti et al., 2022), we

obtained an 0.86 accuracy in predicting MCI to AD con-

version when employing a RF algorithm to neuropsycho-

logical data, cerebrospinal fluid (CSF) levels of AD-

related proteins, structural Magnetic Resonance Imaging

(sMRI), omics data, and apolipoprotein E genotype, all

data obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database (https://adni.loni.usc.edu).

In this study, we compared different performances in

MCI to AD prediction models obtained by using RF, GB

and XGB. These approaches made use of combinations

of multimodal biomarkers. The goal was to test their

stability and reliability in different clinical environments.

The results of the three ML algorithms were combined

with a voting technique to reach the best possible

performance.

As secondary outcomes, we also assessed variable

importance in the prediction and cut-off prediction

values of the essential features by applying the SHapley

Additive exPlanations (SHAP) algorithm (Lundberg and

Lee, 2017) to the model with the best accuracy.
EXPERIMENTAL PROCEDURES

Data

Data used in the preparation of this article were obtained

from the ADNI database (https://adni.loni.usc.edu) and

used in a previous paper (Massetti et al., 2022). The ADNI

was launched in 2003 as a public–private partnership led

by Principal Investigator Michael W. Weiner, MD. The

clinical coordination center of ADNI established a network

of clinical sites. It developed the clinical protocol and

informed consent, which is distributed to the sites for local

institutional review board ethical approval. One such insti-

tution is the Office for the Protection of Research Subjects

at the University of Southern California. Participants pro-

vided written informed consent for the study. More details

can be found at adni.loni.usc.edu. The primary goal of

ADNI has been to test whether serial MRI, positron emis-

sion tomography (PET), other biological markers, and

clinical and neuropsychological assessment can be com-

bined to measure the progression of MCI and early AD.

This study grouped MCI baseline data into three

classes: neuropsychological features, sMRI-related data,

and AD-related biomarkers. Neuropsychological

variables are detailed in Table 1.

MRI data (Image Collections, https://adni.loni.usc.

edu) were acquired with a Magnetization Prepared-

RApid Gradient Echo (MP-RAGE) protocol by employing

a Philips 3 T MRI scanner (https://adni.loni.usc.edu/wp-

content/uploads/2010/05/ADNI2_MRI_Training_Manual_

FINAL.pdf). T1-weighted images were obtained using 3D

Turbo Field-Echo sequences (slice thickness of 1.2 mm,
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Table 1. Neuropsychological measures included in the study and

relative cognitive domains

Neuropsychological test

Abbreviation

Cognitive/functional

domains

Alzheimer’s Disease

Assessment Scale-

Cognitive Subscales-11

items

ADAS-Cog-11

Verbal memory, gnosis

(naming objects and fingers),

praxis (constructional,

ideational, ideomotor),

orientation, and language

Alzheimer’s Disease

Assessment Scale-

Cognitive Subscales-13

items

ADAS-Cog-13

Verbal memory, gnosis

(naming objects and fingers),

praxis (constructional,

ideational, ideomotor),

orientation, language, and

selective attention/

psychomotor speed (number

cancellation)

Boston Naming Test

BNT

Semantic memory and

language

Category Fluency (Animals) Semantic fluency

Clinical Dementia Rating

Scale-Sum of boxes

CDR-SB

Staging of cognitive impairment

through the assessment of

memory, orientation, judgment/

problem solving, community

life, domestic life/hobbies, and

personal care

Clock Drawing Test

CDT

Constructional praxis

Clock Drawing Test

CDT-DEL

Constructional praxis, memory

Functional Activities

Questionnaire

FAQ

Personal care

Logical Memory-Immediate

recall

LM-IMM

Narrative episodic memory

(immediate recall)

Logical Memory-Delayed

recall

LM-DEL

Narrative episodic memory

(delayed recall)

Mini-Mental State

Examination

MMSE

Orientation, verbal memory,

attention, language,

constructional praxis, writing

Rey Auditory Verbal Learning

Test-Immediate recall

RAVLT-IMM

Episodic memory (word list

immediate recall)

Rey Auditory Verbal Learning

Test-Delayed recall

RAVLT-DEL

Episodic memory (word list

delayed recall)

Rey Auditory Verbal Learning

Test-Total score

RAVLT-TOT

Episodic memory (word list

recall, immediate + delayed

recall)

Trail Making Test-Part A

TMT-A

Attention, processing speed,

perceptual-scanning skills,

cognitive flexibility

Trail Making Test-Part B

TMT-B

Attention, executive functions,

processing speed, perceptual-

scanning skills, cognitive

flexibility

Table 2. List of brain areas extracted as sMRI variables parcellated by

FreeSurfer.

Brain regions*

Normalized brain volume Lateral ventricle

Thalamus

Hippocampus

Amygdala

Cortical thickness

(Desikan-Killiany atlas)

Entorhinal

Fusiform

Inferior temporal

Isthmus cingulate

Lateral orbitofrontal

Medial orbitofrontal

Middle Temporal

Parahippocampal

Posterior cingulate

Precuneus

Rostral anterior cingulate

Superior temporal

Supramarginal

Temporal pole

*Right and left brain areas were separately parcellated.
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repetition time/echo time of 6.8/3.1 ms). Like the previous

paper (Massetti et al., 2022), the sMRI analysis was per-

formed with Freesurfer (version 6.0). Automatic recon-

struction and labeling of cortical and subcortical regions

was achieved with the ‘‘recon-all-all” command line,

according to Desikan-Killiany Atlas (Desikan et al.,
2006). The volumes of the brain regions, computed with

asegstats2table, were normalized by dividing by the total

intracranial volume of each patient, while the cortical

thicknesses were calculated automatically by aparcstat-

s2table. All the calculated MRI variables are reported in

Table 2.

AD-related biomarkers encompassed CSF proteins

like Ab42 (ABETA), total-Tau (t-Tau), phosphorylated-

Tau (p-Tau), p-Tau/ABETA ratio (Delli Pizzi et al.,

2019), and APOE e4 genotype from blood samples.

CSF protein levels were measured using the Roche

fully-automated immunoassay platform (Cobas e601)

and immunoassay reagents.
ML algorithms

Single classes or class combinations with a sample size

lower than 300 were excluded from the analyses. ML

algorithms implemented in Python were applied to

identify the best strategy to divide MCI subjects into two

groups: individuals who converted to AD within the 36-

month follow-up (c-MCI) or not (s-MCI). From the entire

dataset, information of 85% of subjects was randomly

extracted and used for the training phase performed by

RF, GB, and XGB separately. After the training stage,

the testing phase was applied by each ML algorithm to

the remaining 15% of the dataset.

We used a random search for RF, GB, and XGB as a

hyperparameter optimization technique (Bergstra and

Bengio, 2012). This step is critical because ML models

need to set hyperparameters to best tune the algorithm

for data testing. Random search is one of the most com-

mon hyperparameter optimization methods, based on

randomly extracting values in a bounded domain of hyper-

parameter values. From several extractions, the algorithm

fits the model for each combination of values and then

selects the hyperparameter combination that provides

the best performance.



Table 3. Performance measures among RF, GB, and XGB applied with multimodal biomarkers. For each performance index, the best values among

RF, GB, and XGB are highlighted in bold.

Neuropsychological

data

(n = 587)

sMRI data

(n = 318)

AD-related

biomarkers

(n = 422)

Neuropsychological

+ AD-related

biomarkers

(n = 422)

Neuropsychological

+ sMRI data

(n = 318)

All features RF GB XGB RF GB XGB RF GB XGB RF GB XGB RF GB XGB

Accuracy 0.83 0.82 0.81 0.79 0.79 0.77 0.85 0.74 0.74 0.87 0.85 0.89 0.83 0.88 0.83

PPV 0.78 0.78 0.81 0.89 0.89 0.84 0.83 0.91 0.91 0.95 0.90 0.95 0.82 0.90 0.89

NPV 0.87 0.85 0.81 0.73 0.73 0.72 0.87 0.70 0.70 0.83 0.83 0.85 0.85 0.86 0.80

Sensitivity 0.81 0.78 0.69 0.67 0.67 0.67 0.80 0.40 0.40 0.72 0.72 0.76 0.82 0.82 0.73

Specificity 0.85 0.85 0.89 0.92 0.92 0.88 0.89 0.97 0.97 0.97 0.94 0.97 0.85 0.92 0.92

Error ±0.08 ±0.08 ±0.08 ±0.12 ±0.12 ±0.12 ±0.09 ±0.11 ±0.11 ±0.09 ±0.09 ±0.08 ±0.11 ±0.09 ±0.11

Feature

selection

RF GB XGB RF GB XGB RF GB XGB RF GB XGB RF GB XGB

Accuracy 0.82 0.82 0.81 0.75 0.77 0.77 NA NA NA 0.84 0.80 0.85 0.81 0.88 0.81

PPV 0.78 0.79 0.81 0.83 0.84 0.88 NA NA NA 0.90 0.84 0.90 0.81 0.83 0.81

NPV 0.85 0.84 0.81 0.70 0.72 0.71 NA NA NA 0.81 0.79 0.83 0.82 0.92 0.82

Sensitivity 0.78 0.75 0.69 0.62 0.67 0.62 NA NA NA 0.68 0.64 0.72 0.77 0.91 0.77

Specificity 0.85 0.87 0.89 0.88 0.88 0.92 NA NA NA 0.94 0.92 0.94 0.85 0.85 0.85

Error ±0.08 ±0.08 ±0.08 ±0.12 ±0.12 ±0.12 NA NA NA ±0.09 ±0.10 ±0.09 ±0.11 ±0.09 ±0.11

Abbreviations: GB =Gradient Boosting; sMRI = structural Magnetic Resonance Imaging; NPV= Negative Predictive Value; PPV= Positive Predictive Value;

RF = Random Forest; XGB= eXtreme Gradient Boosting.

Table 4. Performance measures following voting technique among RF, GB, and XGB. Bold cells indicate that the values with the voting technique were

higher than those obtained by applying RF, GB, or XGB separately.

Neuropsychological

data

(n = 587)

sMRI

data

(n = 318)

AD-related biomarkers

(n = 422)

Neuropsychological +

AD-related biomarkers

(n = 422)

Neuropsychological +

sMRI data

(n = 318)

All features Voting Voting Voting Voting Voting

Accuracy 0.82 0.77 0.75 0.90 0.85

PPV 0.81 0.84 0.86 0.95 0.90

NPV 0.83 0.72 0.72 0.88 0.83

Sensitivity 0.72 0.67 0.48 0.80 0.77

Specificity 0.89 0.88 0.94 0.97 0.92

Error ±0.08 ±0.12 ±0.11 ±0.08 ±0.10

Feature selection Voting Voting Voting Voting Voting

Accuracy 0.80 0.75 NA 0.85 0.81

PPV 0.77 0.83 NA 0.94 0.81

NPV 0.82 0.70 NA 0.81 0.82

Sensitivity 0.72 0.62 NA 0.68 0.77

Specificity 0.85 0.88 NA 0.97 0.85

Error ±0.08 ±0.12 NA ±0.09 ±0.11

Abbreviations: GB =Gradient Boosting; sMRI = structural Magnetic Resonance Imaging; NPV= Negative Predictive Value; PPV= Positive Predictive Value;

RF = Random Forest; XGB= eXtreme Gradient Boosting.
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RF, GB, and XGB were also applied after RF features

selection technique, an algorithm that can handle feature

selection problems even in cases with a higher number of

variables (Chen et al., 2020). Feature selection simplifies

the model by reducing the number of variables, decreas-

ing training time, reducing overfilling by enhancing gener-

alization, and avoiding the course of dimensionality (Chen

et al., 2020). Accuracy, positive predictive value (PPV),

negative predictive value (NPV), sensitivity, and speci-

ficity were calculated for RF, GB, and XGB before and

after RF feature selection to evaluate the performance

of each ML algorithm.
The same performance estimates were evaluated

after the voting technique, an ensemble method

combining multiple models’ performances to make

predictions. Hard voting prediction (Mishra et al., 2021)

with the highest frequency was used.
Biomarkers: Prediction threshold

For the secondary outcomes, the SHAP algorithm

(Lundberg and Lee, 2017) was applied to the model with

the best accuracy –among RF, GB, and XGB– for the

most critical variables in the two class combinations.



Fig. 1. Feature importance as obtained by the RF features selection

technique employed with the most critical variables in single classes.

Abbreviations: ABETA= Ab42 peptide; ADAS-Cog-11 and

13 = Alzheimer’s Disease Assessment Scale-Cognitive Subscales-

11 items and 13 items; APOE4 = Apolipoprotein e4 genotype;

FAQ= Functional Activities Questionnaire; GB = Gradient Boost-

ing; LM-DEL = Logical Memory-Delayed recall; MRI = Magnetic

Resonance Imaging; PTAU= phosphorylated tau protein; RAVLT-

DEL and -IMM= Rey Auditory Verbal Learning Test-Delayed and

Immediate recall; RF = Random Forest; TAU = total tau;

XGB= eXtreme Gradient Boosting.

Fig. 2. Feature importance as obtained by the RF features selection

technique employed with the most critical variables in class combi-

nations. Abbreviations: ABETA= Ab42 peptide; ADAS-Cog-11 and

13 = Alzheimer’s Disease Assessment Scale-Cognitive Subscales-

11 items and 13 items; FAQ= Functional Activities Questionnaire;

GB = Gradient Boosting; Hipp = hippocampus; LM-IMM and -

DEL = Logical Memory-Immediate and Delayed recall; MRI = Mag-

netic Resonance Imaging; RAVLT-IMM= Rey Auditory Verbal

Learning Test-Immediate recall; RF = Random Forest; XGB= eX-

treme Gradient Boosting.
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SHAP is an Explainable Artificial Intelligence (XAI) analy-

sis approach useful for understanding ML outputs. SHAP

assigns to each feature an ‘‘importance” value for a partic-

ular prediction. This SHAP value indicates how much

each feature helps predict the target. Thus, SHAP is

extremely useful for interpreting ML results and predicting

complex models. Each SHAP value of the feature can be

considered as a force that either increases or decreases

the prediction. The prediction starts from the baseline.

The baseline for Shapley values is the average of all pre-

dictions. Each SHAP value is a force that pushes the pre-

diction to increase (positive value) or decrease (negative

value). Thus, the SHAP value for each instant data

describes the model’s output that does not necessarily

represent the real world.
SHAP values for each instant data were calculated for

the ML algorithm with the highest accuracy after the RF

feature selection technique. Thus, for the most critical

biomarker predicting the conversion to AD, biomarkers

threshold values were estimated from the SHAP values

calculated for each MCI subject.
RESULTS

ML algorithms performance

Performance measures were calculated for single classes

and the combinations of neuropsychological features with

AD-related biomarkers and sMRI-related data. As shown

in Table 3, all ML algorithms applied to each class’s

variables achieved good accuracy, which was lower

than 0.80 for sMRI data only. RF achieved the highest

accuracy for neuropsychological features (0.83) and AD-

related biomarkers (0.85). GB and XGB reached the

best performance revealed by the highest accuracy,

PPV, NPV, sensitivity, and specificity for combining

neuropsychological features with sMRI data (0.88) and

AD-related biomarkers (0.89). For the single classes of

variables (i.e., neuropsychological data, sMRI data, and

AD-related biomarkers), RF reached the highest value

of NPV and sensitivity.



Fig. 3. SHAP values for the different feature values. Positive SHAP values within the yellow quadrant indicate probable conversion to AD within a

36-months follow-up. Values in the other sections indicate a low risk of conversion. The red cross for each variable indicates the decision threshold.

Abbreviations: ADAS-Cog-13 = Alzheimer’s Disease Assessment Scale-Cognitive Subscales-13 items; FAQ= Functional Activities Question-

naire; LM-IMM and -DEL = Logical Memory-Immediate and Delayed recall; RAVLT-IMM = Rey Auditory Verbal Learning Test-Immediate recall;

SHAP= SHapley Additive exPlanations.
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When the RF feature selection technique was applied

before classification algorithms, the performances did not

improve. They decreased in the case of some algorithms

and classes (i.e., sMRI data and the combination of

neuropsychological tests with AD-related biomarkers).

After applying the voting technique, performance

values (shown in Table 4) stayed the same with the

exception of a few conditions (i.e., accuracy, NPV, and

sensitivity when combining neuropsychological and AD-

related biomarkers or specificity in the combination of

neuropsychological and sMRI data.
Feature selection: Biomarker’s importance for
different ML algorithms

RF feature selection on all the ML algorithms and classes

showed that six features were the most appropriate

quantity. Thus, the number was set to six for all the
analyses. The importance of the variables was ranked.

The sum of the importance values of the six most

relevant features was set to 1 for each class and class

combination.

The most relevant neuropsychological variables were

related to global cognition (i.e., ADAS-Cog-13),

immediate and delayed verbal memory (RAVLT-IMM

and -DEL, LM-DEL), and daily functioning (FAQ). In the

sMRI dataset, the most relevant measures were the

normalized volumes of both hippocampi and right

amygdala, cortical thickness of the left and right middle

temporal lobe, and the left superior temporal area.

Figs. 1 and 2 show the differences, in terms of variable

importance ranking, according to RF, GB, and XGB

algorithms for the single classes and the class

combinations, respectively. The ADAS-Cog-13 scale

was the most critical neuropsychological parameter for

single classes according to RF and GB models,



Fig. 4. SHAP values for the different feature values. Positive SHAP values within the yellow quadrant indicate a probable conversion to AD within a

36-months follow-up, while the values in the other sections indicate a low risk of conversion. The red cross for each variable indicates the decision

threshold. Normalized volumes are all expressed in cm3. Abbreviations: ADAS-Cog-11 = Alzheimer’s Disease Assessment Scale-Cognitive

Subscales-11 items; FAQ= Functional Activities Questionnaire; RAVLT-IMM= Rey Auditory Verbal Learning Test-Immediate recall;

SHAP= SHapley Additive exPlanations.
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whereas the XGB model classified the six variables as

equally important. A similar trend of the XGB model was

also observed for sMRI data, and AD-related

biomarkers. On the other hand, the cortical thickness of

the left middle temporal area and the normalized volume

of the right hippocampus were chosen as the essential

features to be used by the RF and GB models,

respectively. Among the AD-related biomarkers, the

three algorithms converged toward the most significant

importance for the p-Tau/Ab42 ratio.

When combining neuropsychological data with AD-

related biomarkers, 5 out of the 6 most important

variables were neuropsychological variables. ADAS-

Cog-13 was confirmed as the key variable in the RF

and GB models. In the combination of

neuropsychological and sMRI data, the RAVLT-IMM

was the most important measure for the GB and XGB
models. In contrast, the volume of the left amygdala

was the most critical feature for the RF model.
Biomarkers: Decision threshold values

SHAP value analysis was performed on the XGB model

applied to the combination of neuropsychological data

with AD-related biomarkers (ACC = 0.85) and on the

GB model in the combination of neuropsychological and

sMRI data (ACC = 0.88).

SHAP analyses to assess the most critical variables

showed potential decision thresholds in predicting the

conversion of MCI to AD within a 36-months follow-up.

Figs. 3 and 4 show the SHAP values for the key

variables in the class combinations. For the combination

of neuropsychological data with AD-related biomarkers

(Fig. 3), the model indicated a higher risk of early (i.e.,
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within three years) conversion to AD with the following

values: Ab42 levels < 697 pg/mL, ADAS-Cog-13

score > 14, FAQ score > 3, LM-IMM score < 6, LM-

DEL score < 2.5, and RAVLT-IMM score < 33.

For the combination of neuropsychological and MRI

data (Fig. 4), the model indicated probable conversion

to AD with the following conditions: FAQ score > 3,

ADAS-Cog-11 score > 9, RAVL-IMM score < 29, left

amygdala normalized volume < 0.8 mm3, right

amygdala normalized volume < 0.9 mm3, and right

hippocampus normalized volume < 2 mm3.
DISCUSSION

The development of large databases and ML-based

techniques provides a powerful tool for clinical studies.

However, these approaches must be used in a tailored

fashion. To that aim, we compared the eristic

performances of three ML algorithms in the automated

prediction of MCI conversion to AD. Our data show that

RF performed better than GB and XGB when using

neuropsychological data (list in Table 1). In contrast, GB

and XGB were more accurate than RF when employed

with class combinations (Table 3). Possible explanations

for these differences relate to the random search of the

hyperparameters values (i.e., the number and the depth

of each decision tree, the shrinkage or learning rate for

GB and XGB), which are fewer and easier to tune for

RF than GB and XGB (Elgeldawi et al., 2021). Structural

differences within algorithms can also be involved. Using

a bagging (bootstrap aggregating) technique, RF reduces

the dependence on a single tree by spreading the risk of

error across multiple parallel decision trees built by differ-

ent subsets of the training data. This procedure indirectly

decreases the risk of data overfitting. Instead, by applying

a boosting technique, GB and XGB generated the deci-

sion trees in a sequential manner, thereby learning the

mistake from the previous ones (Cox et al., 2001). How-

ever, this procedure can lead to overfitting, especially

when dealing with a large number of variables.

SMRI data (listed in Table 2) showed lower prediction

accuracy (0.79) than other classes, independently from

the employed ML algorithms. PPV and specificity values

were good (0.89 and 0.92), indicating that brain atrophy

is a specific but poorly sensitive (0.67) biomarker to

predict the MCI conversion to AD. RF feature selection

–when applied before ML algorithms– did not

significantly increase performance, especially in the

case of sMRI variables (Table 3). The combination of

sMRI and neuropsychological variables increased all

performance indices compared to each class’s individual

results. By combining neuropsychological and sMRI

data, accuracy reached 0.88, PPV 0.90, and specificity

0.92. This result confirms the holistic nature of the

disease. It also indicates that the variables ensemble of

different clinical biomarkers (i.e., neuropsychological and

anatomical variables) provides a better model estimation

for AD prediction as it increased the accuracy to 0.88

when neuropsychological data or sMRI data reached

0.83 and 0.79 respectively.
In the case of AD-related biomarkers, the RF

algorithm showed the highest accuracy (0.85), NPV

(0.87), and sensitivity (0.80), whereas GB and XGB had

the best PPV (0.91) and specificity (0.97). All algorithms

showed that the p-Tau/Ab42 ratio is the most critical

parameter of the models. Despite the good accuracy of

these standard AD-biomarkers, future studies on AD

prediction could include biomarkers linked to synaptic

dysfunction, a key pathological feature of AD, which is

correlated to cognitive impairment and Tau-amyloid

pathogenetic mechanisms (Spires-Jones and Hyman,

2014). Possible biomarkers related to synaptic failure

could be presynaptic (Brinkmalm et al., 2014) and den-

dritic proteins (Casaletto et al., 2017), which are

increased in CSF of MCI-AD and AD (Galasko et al.,

2019) and Ab-oligomers which have direct toxic effects

at the synapse level (Williams and Serpell 2011). Neu-

ronal and synaptic dysfunction can also be estimated by

brain metabolic changes and functional disconnections

obtained by 18F fluoro-deoxy-glucose positron emission

tomography (FDG-PET) uptake values (Teng et al.,

2020) and electroencephalographic (EEG) or magnetoen-

cephalographic (MEG) markers (Poil et al., 2013;

Mazaheri et al., 2018).

Other possible biomarkers in AD prediction could be

also probe in serum levels of long-chain ceramides

which might be predictive of hippocampal volume loss

and cognitive decline in MCI subjects (Vozella et al.,

2019).

The voting procedure did not increase performance

measures (Table 4), suggesting that in some MCI

subjects, only a single algorithm outperformed the

others in accuracy values. Although the voting system

has rarely exceeded the performance of a single

algorithm (i.e., in the case of the combination of

neuropsychological data with AD-related biomarkers), it

is undoubtedly an attractive solution because it makes

the system more stable and robust, providing more

reliable outputs.

Results of the feature selection procedure indicated

that the most important variables for each class were

consistent within the three ML algorithms. The ADAS-

Cog was a significant predictor of conversion from MCI

to AD. SHAP analyses suggested that an ADAS-Cog-13

score > 14 or an ADAS-Cog-11 score > 9 (Figs. 3 and

4) could reliably predict an increased risk of disease

progression within 36 months. The normalized volume

of the left and right amygdale and right hippocampus

were the most predictive sMRI variables, confirming

previous studies on the contribution of these areas in

the prediction to AD conversion (Apostolova et al.,

2006; Poulin et al., 2011). The empirical decision thresh-

old values from SHAP analysis could benefit clinical prac-

tice. The approach should be further investigated to

confirm its reliability when used alone or in combination.

Comparing performances of the RF, GB, and XGB

algorithms indicates that they are valid tools to predict

MCI conversion to AD. Our results suggest using

different performance indices (i.e., accuracy, PPV, NPV,

sensitivity, and specificity) to achieve a comprehensive

view of the functioning of the ML algorithms. Indeed,
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sensitivity and specificity are independent of disease

prevalence, whereas PPV increases when prevalence

increases and NPV decreases when prevalence rises.

Our results also indicate that using multiple ML

algorithms could be helpful in achieving more accurate

and reliable predictions. The same multiple ML

algorithms could be used to estimate a model for

predicting MCI in middle-aged and older adults. In

addition, the time of conversion could also be predicted

by time Survival Analysis algorithms (i.e., Kaplan Meier

Curve, Log Rank Test and Cox Regression), and time

series model of DL (i.e., Recurrent Neural Network).
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